STRATOSPHERIC DUST COLLECTIONS
BIBLIOGRAPHY 1976 – PRESENT

Compiled by

Frans J.M. Rietmeijer
Institute of Meteoritics
Department of Earth and Planetary Sciences
University of New Mexico,
Albuquerque, NM 87131, USA

e-mail: fransjmr@unm.edu

This work was supported by NASA Grants NAG 9-160, NAGW-3626, NAG5-4441

Fleur P. Rietmeijer-Engelsman provided technical assistance
at the Electron Microbeam Analyses Facility at UNM
1973

1976

1977

Brownlee DE, Rajan RS, Tomandl DA: A chemical and textural comparison between carbonaceous chondrites and interplanetary dust. In Comets, Asteroids, Meteorites interrelations, evolutions origins Delsemme AH (ed.), p 137-141 University of Toledo

1978

1979

Brownlee DE: Interplanetary Dust. Rev Geophys Space Phys 17: 1735-1743

1980

1981

1982

 Mackinnon IDR, McKay DS, Nace GA, Isaacs AM: AI-prime particles in the cosmic dust collection: Debris or not debris? *Meteoritics* 17: 245

1983

Bradley JP, Brownlee DE: Mineralogy and crystal chemistry of CP micrometeorites. *Lunar Planet Sci* XIV: 67-68

Christoffersen R, Buseck PR: Mineralogy and microstructure of some C-type interplanetary dust particles as determined by analytical electron microscopy. *Lunar Planet Sci* XIV: 111-112

Mackinnon IDR, Rietmeijer FJM: Layer silicates and a bismuth phase in chondritic aggregate W7029*A. *Meteoritics* 18: 343-344

Sandford SA: Spectral matching of astronomical data from Comet Kohoutek with infrared data on collected interplanetary dust. *Meteoritics* 18: 391

1984

McKeegan KD, Sandford SA, Walker RM, Zinner E: Relationship between light isotopic structures in interplanetary dust particles and their physical, chemical, and mineralogical properties. In Abundance Ratios Solar System Conf. Paris, France

McKeegan KD, Sandford SA, Walker RM, Wopenka B, Zinner E: D/H Ratios in interplanetary dust and their relationship to IR, Raman, and EDX observations. Meteoritics 19: 269-270

Rietmeijer FJM, Mackinnon IDR: Diagenesis in interplanetary dust: Chondritic porous aggregate W7029*A. Meteoritics 19: 301

Sandford SA: Laboratory infrared spectra of meteorites and interplanetary dust from 2.5 to 25 microns. Lunar Planet Sci XV: 715-716

Sandford SA, Walker R.M: Laboratory infrared transmission measurements of interplanetary dust and implications for remote observations of cosmic particles. IAU Colloquium #85 Marseille, France

Sandford SA, Walker RM: Middle infrared spectra of laboratory samples of individual interplanetary dust grains. Bull Am Astron Soc 16: 442

Tomeoka K, Buseck PR: A hydrated interplanetary dust particle containing calcium-and aluminum-rich pyroxene: Possible relations to carbonaceous chondrites. Meteoritics 19: 322-323

Zinner E, Fahey A, McKeegan KD: Magnesium and silicon isotopic composition on interplanetary dust particles. Meteoritics 19: 345-346
Zolensky ME, Mackinnon IDR, McKay DS: Towards a complete inventory of stratospheric dust particles, with implications for their classification. Lunar Planet Sci XV: 963-964

1985

Brownlee DE, Wheelock MM: Microprobe analysis of sectioned mafic and sulfide micrometeorites. Meteoritics 20: 617

Christoffersen R, Buseck PR: Mineralogy of the "Olivine" IR class of interplanetary dust. Lunar Planet Sci XVI: 127-128

McKay DS, Rietmeijer FJM, Mackinnon IDR: Mineralogy of chondritic porous aggregates: Current status. Lunar Planet Sci XVI: 536-537

Mogk DW, Mackinnon IDR, Rietmeijer FJM: Auger spectroscopy of stratospheric particles: The influence of aerosols on interplanetary dust. Lunar Planet Sci XVI: 569-570

Rietmeijer FJM: Low-temperature aqueous and hydrothermal activity in a protoplanetary body: Goethite, opal-CT, gibbsite and anatase in chondritic porous aggregate W7029*A. Lunar Planet Sci XVI: 696-697

Rietmeijer FJM, Mackinnon IDR: A multi-stage history for carbonaceous material in extraterrestrial chondritic porous aggregate W7029*A and a new cosmothermometer. Lunar Planet Sci XVI: 700-701

Rietmeijer FJM, McKay DS: An interplanetary dust particle analog to matrices of CO/CV carbonaceous chondrites and unmetamorphosed unequilibrated ordinary chondrites. Meteoritics 20: 743-744

Sandford SA: Interplanetary and interstellar dust. NASA Washington Rpts Planet Astron: 165-166

Sandford SA, Walker RM: Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns. Astrophys J 291: 838-851

Tomeoka K, Buseck PR: "Calrissian"-- A carbonate-rich hydrated interplanetary dust particle: Possible residual material from protostellar clouds. Lunar Planet Sci XVI: 862-863

Zolensky ME: CAI's among the cosmic dust collection. Meteoritics 20: 792-793

Zolensky ME, Mackinnon IDR: Accurate stratospheric particle size distributions from a flat plate collection surface. J Geophys Res 90(D3): 5801-5808

1986

Christoffersen R, Buseck PR: Mineralogy of interplanetary dust particles from the "olivine" infrared class. Earth Planet Sci Lett 78: 53-66

Christoffersen R, Buseck PR: Refractory minerals in interplanetary dust. Science 234: 590-592

Gibson EK Jr, Sommer MS: Laser microprobe study of cosmic dust (IDPs) and potential source materials. Lunar Planet Sci XVII: 260-261

Mackinnon IDR: Stratospheric dust collections: Valuable resources for space and atmospheric scientists. In Trajectory Determinations and Collection of Micrometeoroids on the Space Station, Hörz F (ed.), LPI Tech Rept 86-05:68-69 Lunar and Planetary Institute, Houston

Mackinnon IDR: Targeted flight opportunities with Large Area Collectors. In Trajectory Determination and Collection of Micrometeoroids on the Space Station, Hörz F (ed.), LPI Tech Rept 86-05: 70-71. Lunar and Planetary Institute, Houston

Rietmeijer FJM: Implications of aggregate textures within a group of anhydrous chondritic porous interplanetary dust particles. Trans Am Geophys Union (EOS) 67: 1072- 1073

Rietmeijer FJM: What predictions can be made on the nature of carbon and carbon-bearing compounds (hydrocarbons) in the interstellar medium based on studies of interplanetary dust particles? In Interrelationships among Circumstellar, Interstellar, and Interplanetary Dust, Nuth JA, Stencil RE (eds.), NASA Conf Publ 2403: A23- A27

Rietmeijer FJM: The importance of capturing unmodified chondritic porous micrometeorites on the Space Station. In Trajectory Determinations and Collection of Micrometeoroids on the Space Station, Hörz F (ed.), LPI Tech Rept 86-05: 80-82 Lunar and Planetary Institute, Houston

Rietmeijer FJM, McKay DS: Fine-grained silicates in a chondritic interplanetary dust particle are evidence for annealing in the early history of the solar system. Lunar Planet Sci XVII: 710-711

Sandford SA: Acid dissolution experiments: Carbonates and the 6.8-micrometer bands in interplanetary dust particles. Science 231: 1540-1541

Sandford SA: Solar flare track densities in interplanetary dust particles: The determination of an asteroidal versus cometary source of the zodiacal dust cloud. Icarus 68: 377-394

Sandford SA: The use of solar flare track densities measured in interplanetary dust particles (IDPs) to determine an asteroidal versus cometary origin of the zodiacal dust cloud. Meteoritics 21: 501-502

Sandford SA: The world's smallest acid residue: The source of the 6.8 μm band seen in some IDP spectra. Lunar Planet Sci XVII: 756-757

van der Stap CCAH, Vis RD, Verheul H: Interplanetary dust: Arguments in favour of a late stage nebula origin of the chondritic aggregates. Lunar Planet Sci XVII: 1013-1014

Tomeoka K, Buseck PR: A carbonate-rich, hydrated, interplanetary dust particle: Possible residue from protostellar clouds. Science 231: 1544-1546

Walker RM: Laboratory studies of interplanetary dust. In Interrelationships among Circumstellar, Interstellar, and Interplanetary Dust, Nuth JA, Stencil RE (eds) NASA Conf Publ 2403: 55-70

1987

Blake DF, Bunch TE: AEM characterization of phases in a hydrated IDP. Lunar Planet Sci XVIII: 83-84

Blanford GE, Thomas Verploeg K, McKay DS: Microbeam analysis of interplanetary dust particles for major elements, oxygen and carbon. Lunar Planet Sci XVIII: 89-90

Bradley JP, Germani MS: Continuing electron microscopic studies of thin-sectioned interplanetary dust. Meteoritics 22: 335-336

Mackinnon IDR, Rietmeijer FJM, McKay DS: Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites. *NASA Tech Memorandum* 89810, 87-89

Rietmeijer FJM: Formation of high-temperature minerals by annealing of amorphous, low-temperature anhydrous chondritic interplanetary dust. *Lunar Planet Sci* XVIII: 834-835

Rietmeijer FJM, Mackinnon IDR: Cometary evolution: Clues from chondritic interplanetary dust particles. *European Space Agency* SP-278: 363-367
Rietmeijer FJM, Mackinnon IDR: Interstellar titanium-oxides in interplanetary dust. Meteoritics 22: 490-491

Walker RM: Are IDPs and Halley dust similar and, if so, so what? Lunar Planet Sci XVIII: 1048-1049

Wopenka B: Raman observations of individual interplanetary dust particles. Lunar Planet Sci XVIII: 1102-1103

1988

Allamandola LJ, Sandford SA, Wopenka B: Aromatic components in cometary materials. Workshop Infrared Observations of comets Halley and Wilson, NASA CP-3004, 73-74

Blanford GE, Thomas KL, McKay DS: Microbeam analysis of chondritic interplanetary dust particles for carbon, oxygen, and major elements. Lunar Planet Sci XIX: 102-103

Bradley JP, Brownlee DE, Germani MS, Dietz N: Analytical electron microscopy of interplanetary dust particles (IDPs). *Chern. Geol.* 70: 30

Hartmetz CP, Blanford GE, Gibson EK: Comparison of volatiles released from carbonaceous chondrites and IDPs, with the Halley cometary volatiles. *Meteoritics* 23: 272

Rietmeijer FJM: A quantitative comparison of fine-grained chondritic interplanetary dust and comet Halley dust. *Lunar Planet Sci* XIX: 980-981

Rietmeijer FJM: On graphite in primitive meteorites, chondritic interplanetary dust, and interstellar dust. *Icarus* 74: 446-453

Rietmeijer FJM: On a chemical continuum in early Solar System dust at >1.8AU. *Chem Geol* 70: 33

Wopenka B: Raman observations on individual interplanetary dust particles. *Earth Planet Sci Lett* 88: 221-231

1989

Brownlee DE: Comets, Meteorites and Interplanetary Dust. IAU, Highlights of Astronomy, in press

Rietmeijer FJM: Extraterrestrial sulfur in the lower stratosphere contributed by chondritic interplanetary dust particles. *Meteoritics* 24: 319-320

Rietmeijer FJM, Mackinnon IDR: Grain size distributions of Magneli phases and metallic titanium in chondritic porous interplanetary dust particles. *Lunar Planet Sci* XX: 902-903

Sandford SA, Bradley JP: Interplanetary dust particles collected in the stratosphere: Observations of atmospheric entry heating and constraints on their interrelationships and sources. *Icarus* 82: 146-166

Steele IM: Forsterite in Cl meteorites and interplanetary dust: Minor elements and comparison with other meteorite types. *Lunar Planet Sci* XX: 1054-1055

Zolensky ME, McKay DS, Kaczor LA: A tenfold increase in the abundance of large solid particles in the stratosphere, as measured over the period 1976-1984. *J Geophys Res* 94 (D1): 1047-1056

1990

Bradley JP: Newly developed techniques for the analysis of micrometer-sized interplanetary dust particles (IDPs) and comet grains. Space Sci Rev: in press

Brownlee DE, Schramm LS: The composition of picogram to milligram meteoritic spherules. Lunar Planet Sci XXI: 135-136

Flynn GJ, Sutton SR: Element abundances in seven particles from the large area collectors. Lunar Planet Sci XXI: 373-374

Germani MS, Bradley JP, Brownlee DE: A comparative study of "layer silicate" interplanetary dust particles (IDPs) and CI/CM carbonaceous chondrites. Lunar Planet Sci XXI: 415-416

Hartmetz CP, Gibson, Jr. EK, Blanford GE: In situ extraction and analysis of volatiles and simple molecules in interplanetary dust particles, contaminants, and silica aerogel. Proc 20th Lunar Planet Sci Conf: 343-356

Hartmetz CP, Gibson, Jr. EK, Blanford GE: Volatiles present in interplanetary dust particles and contaminants collected on the large area collectors. Lunar Planet Sci XXI: 459-460

Lindstrom DJ, Zolensky ME, Martinez RR: INAA of cosmic dust particles from the large area collector. Lunar Planet Sci XXI: 700-701

Nier AO, Schlutter DJ: Helium and neon isotopes in individual stratospheric particles --A further study. Lunar Planet Sci XXI: 883-884

Nier AO, Schlutter DJ: Extraction of noble gases from individual IDPs by step-heating. Meteoritics 25: 392

Rietmeijer FJM: Turbostratic carbon with remnant precursor material in individual chondritic porous interplanetary dust particles. *Lunar Planet Sci* XXI: 1013-1014

Rietmeijer FJM: Mineralogy and origins of unequilibrated chondritic interplanetary dust. 15th General Meeting Intern Mineral Assoc (Beijing, PRC): 662-663

Sandford SA: The interplanetary dust populations from comets and asteroids: Constraints derived from collected IDPs and telescopic data. *IAU Colloquium* #126:34

Steele IM: Minor elements in forsterites of Orgueil (Cl), Alais (Cl) and two interplanetary dust particles compared to C2-C3-UOC forsterites. *Meteoritics* 25: 301-307

1991

Bradley JP, Brownlee DE: An interplanetary dust particle linked directly to type CM meteorites and an asteroidal origin. *Science* 251: 549-552

Bradley JP, Humecki H, Germani M, Bales H: Combined infrared (IR) and analytical electron microscope (AEM) studies of thin-sectioned IDPs. Lunar Planet Sci XXII: 131-132

Brownlee DE, Love S, Schramm LS: Cosmic spherules and giant micrometeorites as samples of main belt asteroids. Lunar Planet Sci XXII: 147-148

Flynn GJ: Survival of large micrometeorites on atmospheric entry: implications for their sources and the flux of cometary dust. Lunar Planet Sci XXII: 393-394

Flynn GJ, Sutton SR: Average minor and trace element contents in seventeen "chondritic" IDPs suggest a volatile enrichment. Meteoritics 26:334

Flynn GJ, Sutton SR: Chemical characterization of seven Large Area Collector particles by SXRF. Proc Lunar Planet Sci 21: 549-556

Hartmetz CP, Gibson EK, Blanford GE: Analysis of volatiles present in interplanetary dust and stratospheric particles collected on Large Area Collectors. Proc Lunar Planet Sci 21: 557-569

Keller LP, Thomas KL, McKay DS: Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites. Meteoritics 26: 355-356

Nier AO, Schlutter DJ: Extraction of ⁴He from IDPs by step heating. Meteoritics 26: 379

Rietmeijer FJM: Hydrated low-nickel stratospheric particles compared to the smectite subclass of hydrated interplanetary dust particles. *Lunar Planet Sci* XXII: 1121-1122

Rietmeijer FJM: Dynamic pyrometamorphism of interplanetary dust particles compared to atmospheric entry model temperatures. *Meteoritics* 26: 388

Sandford SA: Constraints on the parent bodies of collected interplanetary dust particles. In *Origin and Evolution of Interplanetary Dust* (Levasseur-Regourd AC, Hasegawa H (eds.), 397-400, Kluwer Academic, Japan

Stadermann FJ: Rare earth and trace element abundances in individual IDPs. *Lunar Planet Sci* XXII: 1311-1312

Thomas KL, Keller LP, Klock W, McKay DS: Mineralogical and chemical constraints on parent bodies for hydrated interplanetary dust particles. *Lunar Planet Sci* XXII: 1395-1396

1992

Blake DF, Fleming RH: Sequential analyses of IDPs by LVSEM, TOF-SIMS, SIMS, and AEM. Lunar Planet Sci XXIII: 115-116

Bradley JP, Humecki HJ, Germani MS: Interplanetary dust analogues for infrared silicate emission from comets. Lunar Planet Sci XXIII: 151-152

Bradley JP, Humecki HJ, Germani MS: Combined infrared and analytical electron microscope studies of interplanetary dust particles. Astrophys J 394: 643-651

Flynn GJ, Sutton SR, Keller LP, Thomas KL, Bajt S: Trace elements in chondritic spheres from the stratosphere: Implications for the Ni-depletions in polar micrometeorites. Meteoritics 27: 221

Keller LP, Thomas KL, McKay DS: Thermal processing of cosmic dust: Atmospheric heating and parent body metamorphism. Lunar Planet Sci XXIII: 675-676
Klöck W, Flynn GJ, Sutton SR, Nier AO: Mineralogy of IDPs with known 4He and trace element contents. Meteoritics 27: 243-244

Lindstrom DJ: Scandium/iron and cobalt/iron ratios as indicators of the sources of stratospheric dust particles. Lunar Planet Sci XXIII: 779-780

Nier AO, Schlutter DJ: Helium release from interplanetary dust particles in laboratory studies simulating the heat pulse experienced by particles during atmospheric entry. Lunar Planet Sci XXIII: 991-992

Nier AO, Schlutter DJ: Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27: 166-173

Nier AO, Schlutter DJ: Extraction of helium from individual IDPs and lunar grains by pulse-heating. Meteoritics 27: 268-269

Rietmeijer FJM: Endothermic reactions constrain dynamic pyrometamorphic temperatures in two iron-rich interplanetary dust particles. Lunar Planet Sci XXIII: 1151-1152

Rietmeijer FJM: Interplanetary dust particle L2005T12 directly linked to type CM chondrite petrogenesis. Lunar Planet Sci XXIII: 1153-1154

Rietmeijer FJM: Pregraphitic and poorly graphitised carbons in porous chondritic micrometeorites. Geochim Cosmochim Acta 56: 1665-1671

Rietmeijer FJM: Bromine in interplanetary dust particles (IDPs): Evidence for stratospheric contamination. Meteoritics 27: 280-281

Rietmeijer FJM: Mineralogy of primitive chondritic protoplanets in the early solar system. Trends Mineral 1: 23-41

Stephan T, Klöck W, Jessberger EK, Zehnpfenning J: Analysis of stratospheric interplanetary dust particles with TOF-SIMS, SEM, and TEM. Meteoritics 27: 292

Zolensky ME, Barrett R: Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. Meteoritics 27: 312-313

1993

Bohsung J, Jessberger EK, Stephan T: Concerted elemental analyses – PIXE and TOF-SIMS - of interplanetary dust particles. IAU Symposium ACM93 #160: 38

Clemett SJ, Maechling CR, Zare RN, Swan PD, Walker RM: Identification of complex aromatic molecules in individual interplanetary dust particles. Science 262: 721-725

Flynn GJ, Sutton SR, Bajt S: Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination. Lunar Planet Sci XXIV: 495-496

Nier AO, Schlutter DJ: Helium in interplanetary dust particles. Lunar Planet Sci XXIV: 1075-1076

Nier AO, Schlutter DJ: The thermal history of interplanetary dust particles collected in the Earth's stratosphere. Meteoritics 28: 675-681

Rietmeijer FJM: The bromine content of micrometeorites: Arguments for stratospheric contamination. J Geophys Res 98(E4): 7409-7414

Rietmeijer FJM: Size distributions in two porous chondritic micrometeorites. Earth Planet Sci Lett 117: 609-617

Zolensky ME, Barrett R: The genetic relationship between hydrous and anhydrous interplanetary dust particles. Microbeam Analysis 2: 191-197

1994

Bradley JP: Chemically anomalous, pre-accretionaly irradiated grains in interplanetary dust from comets. Science 265: 925-929

Bradley JP, Brownlee DE, Keller LP: Reflectance spectroscopy of individual interplanetary dust particles. Lunar Planet Sci XXV: 159-160

Flynn GJ: Interplanetary dust particles collected from the stratosphere: Physical, chemical and mineralogical properties and implications for their sources. Planet. Space Sci. 42: 1151-1161

Keller LP, Thomas KL, McKay DS: The nature of carbon-bearing phases in hydrated interplanetary dust particles. Meteoritics 29: 480-481

Maetz M, Arndt P, Bohsung J, Jessberger EK: Comprehensive analysis of six IDPs with the Heidelberg proton microprobe. *Meteoritics* 29 494-495

Love SG, Joswiak D, Brownlee DE: Densities of stratospheric micrometeorites. *Icarus* 111: 227-236

Nier AO, Schlutter DJ: 3He/4He ratios in interplanetary dust particles. *Meteoritics* 29: 511

Rietmeijer FJM: Sulfide and layer silicate grain size distributions constrain the unique petrogenesis of a type CM interplanetary dust particle. *Lunar Planet Sci* XXV: 1131-1132

Sandford SA: What can interplanetary dust particles tell us about interstellar dust? 22nd IAU General Assembly Commissions 21&34, Joint Discussion (The Hague, the Netherlands), 262(JD 17.1-4) Abstr Vol

Xu Yin Lin Song L-G Zhang Y-X, Fan C-Y: \(^6\text{Li}/\text{Li}, ^{10}\text{B}/^{11}\text{B}\) and \(^7\text{Li}/^{11}\text{B}/^{28}\text{Si}\) individual IDPs. In *Workshop on the Analysis of Interplanetary Dust Particles*, Zolensky M (ed.) LPI Tech Rpt 94-02: 52-54 Lunar and Planetary Institute, Houston

Xu Yin-Lin., Song Ling-Gen., Zhang Yong-Xia, Fan CY: \(^6\text{Li}/\text{Li}, ^{10}\text{B}/^{11}\text{B}\) and \(^7\text{Li}/^{11}\text{B}/^{28}\text{Si}\) in individual interplanetary dust particles. In *Analysis of Interplanetary Dust*, Zolensky ME, Wilson TL, Rietmeijer FJM, Flynn GJ (eds.) *AIP Conf Proc* 310: 211-221 Am Inst Physics Press, NY

Zolensky M, Barrett R: Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. In Workshop on the Analysis of Interplanetary Dust Particles, Zolensky M (ed.) LPI Tech Rpt 94-02:54-56 Lunar and Planetary Institute, Houston

Zolensky M, Barrett R: Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. Meteoritics 29: 616-620

1995

Flynn GJ: Atmospheric entry heating of large interplanetary dust particles. *Meteoritics* 30: 504-505

Flynn GJ, Bajt S, Sutton SR, Klöck W: Large stratospheric IDPs: Chemical composition and comparison with smaller stratospheric IDPs. *Meteoritics* 30: 505

Jessberger EK, Arndt P: The elemental abundances in interplanetary dust particles. *IAU Coll, 150, 31*

Messenger S, Clemett SJ, Keller LP, Thomas KL, Chillier XDF, Zare RN: Chemical and mineralogical studies of an extreme deuterium-rich IDP. *Meteoritics* 30:546-547

Rietmeijer FJM: Magnesium loss from unmelted stratospheric interplanetary dust particles during atmospheric entry. *Lunar Planet Sci* XXVI: 1165-1166

Rietmeijer FJM: Reply. *J Geophys Res* 100(E4): 7551-7552

Stephan T, Rost D, Jessberger EK: Surface analysis of stratospheric particles with TOF-SIMS- Bromine enrichments due to contamination. Meteoritics 30: 583

Strait MM, Thomas KL, McKay DS: Porosity of an anhydrous chondritic interplanetary dust particle. Meteoritics 30: 583-584

Thomas KL, Keller LP, McKay DS: A comprehensive study of major-, minor-, and light-element abundances in over 100 interplanetary dust particles. Meteoritics 30: 587-588

Zolensky ME: Iron-nickel sulfides from samples of the solar nebula, comets, and asteroids. Scanning 17 Suppl: V65-V66

1996

Bajt S, Chapman HN, Flynn GJ, Keller LP: Carbon XANES evidence for C60 in interplanetary dust particles. Meteoritics Planet Sci 31: All

Bradley JP: Compositional mapping of interplanetary dust particles with nanometer-scale spatial resolution. Meteoritics Planet Sci 31: A19

Flynn GJ: Are the S-Type asteroids the parent bodies of ordinary chondrite meteorites?: Evidence from the interplanetary dust recovered from the Earth's stratosphere. Lunar Planet Sci XXVII: 365-366

Flynn GJ, Bajt S, Sutton SR, Zolensky M, Thomas KL, Keller LP: The volatile content of interplanetary dust collected from the Earth's stratosphere: Evidence for a new type of extraterrestrial material. IAU Colloquium #150: 16

Flynn GJ, Sutton SR, Bajt S: Chemical compositions of cluster IDPs by XRF microprobe. Meteoritics Planet Sci 31: A45-A46

Joswiak DJ, Brownlee DE, Bradley JP, Schlutter DJ, Pepin RO: Systematic analyses of major element distributions in GEMS from high speed IDPs. Lunar Planet Sci XXVII: 625-626

Keller LP, Thomas KL, McKay DS: Carbon petrography and the chemical state of carbons in IDPs. *IAU Colloquium* #150: 32

Keller LP, Thomas KL, McKay DS: Mineralogical changes in IDPs resulting from atmospheric entry heating. *IAU Colloquium* 150: 33

Keller LP, Thomas KL, McKay DS: Mineralogical changes in IDPs resulting from atmospheric entry heating. In *Physics, Chemistry and Dynamics of Interplanetary Dust*, Gustafson BAS, Hanner MS (ed) Astron Soc Pacific Conf Series 104: 295-298

Klöck W: Are all chondritic porous IDPs of cometary origin? *Meteoritics Planet Sci* 31: A71

Rietmeijer FJM: The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmospheric entry heating. *Meteoritics Planet Sci* 31: 237-242

Rietmeijer FJM: A test of isochemical behaviour of principal components in chondritic porous IDPs. Meteoritics Planet Sci 31: A114

Thomas KL, Keller LP, McKay DS: Summary of major, minor and light element abundances in interplanetary dust particles: A comprehensive study of carbon and oxygen abundances in extraterrestrial particles. IAU Colloquium 150: 63

1997

Brownlee DE, Joswiak D, Bradley JP: Vesicular carbon in strongly heated IDPs. Lunar Planet Sci XXVIII: 165-166

Flynn GJ: The contribution by interplanetary dust to noble gases in the atmosphere of Mars. J Geophys Res 102(E4): 9175-9182

Flynn GJ, Sutton SR: The chemical composition of cluster IDPs using the XRF-microprobe. Lunar Planet Sci XXVIII: 363-364

Keller LP, Messenger S: Reflectance spectra of deuterium-rich cluster IDPs. Lunar Planet Sci XXVIII: 705-706

Munro CH, Witkowski RE, Bornett RW, Zolensky ME, Asher SA: UV Raman microspectroscopy of carbon-rich meteorites and interplanetary dust particles (IDPs) PITCON’97, Abstr. With Programs: 11

Rietmeijer FJM: Principal components: Petrology and chemistry of polyphase units in chondritic porous interplanetary dust particles. Lunar Planet Sci XXVIII: 1173-1174

Rietmeijer FJM: First-order properties of chondritic cluster IDPs based on data from the NASA/JSC Cosmic Dust Catalogs. Lunar Planet Sci XXVIII: 1169-1170

Rietmeijer FJM: Not all cluster particles in the NASA/JSC Cosmic Dust Collection are extraterrestrial. Lunar Planet Sci XXVIII: 1171-1172

Rietmeijer FJM: Cluster particles: A unique new class of asteroid debris or a not of caution? Meteoritics Planet Sci 32 (suppl): A108

Rietmeijer FJM, Mackinnon IDR: Bismuth oxide nanoparticles in the stratosphere J Geophys Res-Planets 102(E3): 6621-6627

Rietmeijer FJM, Mackinnon IDR: Cometary evolution: Clues on physical properties from chondritic interplanetary dust particles. In Analysis of Returned Comet Nucleus Samples (S Chang, ed.), NASA Conf. Publ. 10152, 249-253

1998

Brownlee DE, Joswiak DJ, Bradley JP, Schlutter DJ, Pepin RO: Tiny bubbles: Direct observation of He in IDPS. Lunar Planet Sci XXIX: CD ROM #1869

Keller LP, Messenger S: The petrography and mineralogy of a deuterium-rich cluster IDP. Lunar Planet Sci XXIX: CD ROM #1683

Messenger S: Oxygen-isotopic imaging of interplanetary dust. Meteoritics Planet Sci 33, Suppl: A106

Nittler LR, Messenger S: Hydrogen and nitrogen isotopic imaging of interplanetary dust. Lunar Planet Sci XXIX: CD ROM #1380

Peppin RO, Schlutter DJ: Excess helium-3 in interplanetary dust particles. Meteoritics Planet Sci, 33, Suppl: A121

Rietmeijer FJM: Looking for order in Chaos: Metastable eutectics constrain the petrologic phase equilibria in aggregate IDPs. Lunar Planet Sci XXIX: CD ROM #1150

Rietmeijer FJM: Non-chondritic cluster fragments: Asteroidal volcanism that escapes recognition in individual IDPs. Lunar Planet Sci XXIX: CD ROM #1148

Romstedt J: Submicron phases on cosmic spherules and stratospheric particles imaged by atomic force microscopy. Lunar Planet Sci XXIX: CD ROM #1213

1999

Bradley JP, Keller LP: Comparison of collected interplanetary dust particles with dust in space. In Workshop on thermal emission spectroscopy and analysis of dust, disks, and regoliths (AL Sprague, DK Lynch and M Sitko, Eds), LPI Contribution 969, 4-5, Lunar and Planetary Institute, Houston

Brownlee DE, Joswiak DJ, Bradley JP: High spatial resolution analyses of GEMS and other ultrafine grained IDP components. Lunar Planet Sci XXX: CD ROM #2031

Clemett SJ., Messenger S., Keller LP, Zare RN: Are aromatic hydrocarbons the carriers of D/H and 15N/14N isotope anomalies in IDPs? Lunar Planet Sci XXX: CD ROM #1783

Flynn GJ: Interplanetary dust, micrometeorites, and meteorites: Chemistry, mineralogy and atmospheric interactions of meteors. 37th Amer. Inst. Aeronautics Astronautics Meeting & Exhibit (Reno, NV, January 11-14, 1999), paper #99-0500

Pepin RO, Palma RL, Schlutter D: Evidence for a dominant component of Solar-Energetic-Particle (SEP) helium and neon in a suite of interplanetary dust particles. Lunar Planet Sci XXX: CD ROM #1864

Rietmeijer FJM: Interplanetary dust particles, micrometeorites, mesospheric metals, and meteoric dust. 37th Amer. Inst. Aeronautics Astronautics Meeting & Exhibit (Reno, NV, January 11-14, 1999), paper #99-0502, 12p

Rietmeijer FJM: Evolution of condensed pre-solar dust with metastable eutectic smectite dehydroxylate compositions: Truly GEMS. Lunar Planet. Sci XXX: CD ROM #1060

Rietmeijer FJM: Energy for dust modification in the solar nebula, and in the first-formed protoplanets and their present-day survivors. Lunar Planet. Sci XXX: CD ROM #1065

Rost D, Stephan T, Jessberger EK: Surface analysis of stratospheric dust particles. Meteoritics Planet Sci 34, 637-646

2000

Joswiak DJ, Brownlee DE, Pepin RO, Schlutter DJ: Characteristics of asteroidal and cometary IDPs obtained from stratospheric collectors: Summary of measured He release temperatures, velocities and descriptive mineralogy. *Lunar Planet. Sci* XXXI: CD ROM #1500

Quirico E, Raynal P-I, Borg J, Demyk K, Dartois E, Aubert D, Aiouaz T, Deboffle D, d’Hendecourt L: The question of the 6.8 µm-band in the spectra of 5 IDPs. Lunar Planet. Sci XXXI: CD ROM #1260

Raynal Pl, Quirico E, Borg J, d’Hendecourt L: Micro-Raman study of the carbon phase in 6 IDPs. Lunar Planet. Sci XXXI: CD ROM #1318

Rietmeijer FJM: Metastable Eutectic Behavior Observed during Dynamic Pyrometamorphism in the Matrix of an Aggregate IDP. Lunar Planet Sci XXXI, CD ROM #1051

Rietmeijer FJM, Nuth III JA: Collected extraterrestrial materials: constraints on meteor and fireball compositions. Special Issue Earth, Moon and Planets: in press

Rietmeijer FJM, Jenniskens P: Recognizing Leonid meteoroids among the collected stratospheric dust. Special Issue Earth, Moon and Planets: in press

Frans J. M. Rietmeijer;

Revised: Albuquerque, August 8, 2000