Millennial-scale paleoclimate cycles recorded in widespread Palaeozoic deeper water rhythmites of North America

Maya Elrick a,⁎, Linda A. Hinnov b

a Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, United States
b Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, United States

Received 27 March 2006; received in revised form 18 August 2006; accepted 23 August 2006

Abstract

Rhythmically interbedded limestone and shale or limestone and chert (“rhythmites”) are a common feature of many deep-water Phanerozoic carbonate marine deposits. Seventeen different Palaeozoic rhythmite successions from across North America (8 studied in detail, 9 studied in reconnaissance) are described and summarized. Individual rhythmite couplets (4–20 cm thick) are composed of fine-grained, laminated to massive detrital limestone alternating with shale (or marl), or laminated spiculitic chert. Stratigraphic and primary depositional features within rhythmites and associated facies indicates that the carbonate-rich and carbonate-poor interbedding is the result of repetitive changes in sediment input (primary) rather than due to diagenetic redistribution of calcareous material (secondary).

The average duration of individual rhythmite couplets is calculated using spectral analysis (to determine couplet thickness) combined with biostratigraphically calibrated undecompressed average sediment accumulation rates. The duration of rhythmite couplets from the eight well studied successions ranges between ∼150 and ∼4900 yrs with the majority lying between ∼1000 and 3000 yrs; i.e., millennial scale. The paucity and low diversity of skeletal and trace fossils, preserved suspension laminae, lack of sediment reworking, and facies associations indicate rhythmite accumulation was favored by: (1) deposition below storm-wave base which limited reworking by currents, (2) dyasaerobic bottom waters which restricted bioturbation and internmixing of interbedded lithologies, and (3) proximity to nearshore carbonates supplying abundant fine-grained detrital carbonate. These combined conditions were best met along flooded, subtropical continental shelves or epeiric seas during My-scale (3rd-order) sea-level rises.

The rhythmic alternation between carbonate-rich and carbonate-poor layers is interpreted to represent millennial-scale paleoclimatic changes related to: (1) wet/dry climate cycles which influenced the amount of continent-derived eolian and/or fluvial sediment input, (2) variations in offshore transport (via storm-generated or density currents) of nearshore-derived terrigenous or carbonate sediments, and/or (3) changes in wind-driven upwelling and availability of recycled biogenic silica.

The various rhythmite successions accumulated under dramatically different paleoenvironment and paleogeographic conditions including active to passive tectonic settings, equatorial to subtropical latitudes, long-term icehouse through greenhouse climatic conditions, calcite versus aragonitic seas, variable atmospheric CO₂ concentrations, before and after land plant and animal evolution, and across widely varying ocean basin configurations.

If our short-term paleoclimatic interpretations for the rhythmites are correct, then it is apparent that millennial-scale climate changes occurred over a very wide spectrum of paleoceanographic, paleogeographic, paleoclimatic, tectonic, and biologic conditions and over time periods from the Cambrian to the Quaternary. Given this, it is difficult to invoke models of internally driven thermohaline oceanic oscillations or continental ice sheet instabilities to explain their origin. Instead, we suggest that
Millennial-scale paleoclimate variability is a more permanent feature of the Earth’s ocean–atmosphere system, which points to an external driver such as solar forcing. © 2006 Elsevier B.V. All rights reserved.

Keywords: Millennial-scale climate change; Palaeozoic; Rhythmites; Carbonates

1. Introduction

Millennial-scale climate variability is a pervasive feature of many late Neogene–Quaternary marine, glacial, and terrestrial records, and occurs in deposits from polar to tropical latitudes, in the southern and northern hemispheres, and during glacial and interglacial times (e.g., Clark et al., 1999; Sarnthein et al., 2002). Although the temporal resolution of this climate signal varies depending on the system studied, the periods of late Neogene–Quaternary millennial-scale climate change cluster around ∼1500 yrs and ∼2500 yrs. Despite their ubiquitous nature, the origins of such climate change are still not understood.

While records of late Neogene–Quaternary millennial-scale climate variations are common, detection of similar scale oscillations in older paleoclimate archives is notably scarce. This is due in part to limitations in chronologic resolution, poorer preservation potential including the paucity of pre-Jurassic deep-sea sediments, and on a more basic level, to the difference in research focus of traditional sedimentary geologists versus paleoceanographers or paleoclimatologists. Despite these challenges, millennial-scale paleoclimate oscillations have been detected in some Mesozoic and Palaeozoic systems. The Permian Castile Formation of west Texas is composed of a remarkable ∼250,000 yr-long evaporite succession with annual resolution recording prominent ∼1500, ∼1800, and ∼2300 yr cycles (Anderson, 1982). Triassic deeper marine deposits from the southern Alps record ∼2500–5000 yr cycles expressed as rhythmically interbedded limestone and shale couplets (Burchell et al., 1990). Limestone and marl couplets with durations of <3000 yrs are documented in Cambrian, Devonian, and Mississippian marine deposits from the western U.S. and are expressed as thin, rhythmically interbedded limestone and shale/marl layers or “rhythmites” (Elrick et al., 1991; Elrick and Hinnov, 1996). These Palaeozoic and Mesozoic examples provide intriguing insights into the origins of millennial-scale climate change because they developed under wide ranging palaeoenvironmental (climatic, oceanographic, tectonic, geographic, atmospheric, and biologic) conditions that were very different from those characterizing the past few million years of Earth history. Thus, the processes and conditions responsible for millennial-scale climate variability during the late Neogene–Quaternary are not unique and must have been operating at least as far back in time as the Cambrian.

Limestone–marl/shale rhythms are known from all Phanerozoic time periods and accumulated within a wide range of depositional settings from shallow marine to hemipelagic, but are particularly common from deeper water settings of epeiric seas (e.g., Einsele and Ricken, 1991; Westphal and Munnecke, 2003). The origin of the visually striking rhythmicity between carbonate-rich and carbonate-poor layers is debated; many researchers believe the lithologic variations are due to cyclic fluctuations in depositional conditions (primary) which permits utilizing the rhythms for chronologic and paleoclimatic interpretations (e.g., Arthur et al., 1986). On the other hand, there are those who interpret the rhythmite development as strongly controlled by early (Munnecke and Samtleben, 1996) to late stage (Ricken, 1986) diagenetic redistribution of calcareous material (secondary); an interpretation which highlights the importance of diagenesis on carbonate facies.

The objectives of this paper are to: (1) review the persistent and widespread occurrence of Palaeozoic rhythmites across North America, (2) demonstrate their primary depositional origin at millennial time scales, (3) summarize the range of palaeoenvironmental conditions that prevailed during rhythmite accumulation, and (4) briefly discuss the implications primary Palaeozoic rhythmites have on understanding the origin of pervasive late Neogene–Quaternary millennial-scale climate variability.

2. Palaeozoic rhythmite successions

A total of 17 different Palaeozoic rhythmite successions occurring across North America are presented in this study (Fig. 1); eight have been studied in detail (Table 1) and nine additional occurrences have been studied in reconnaissance (Table 2).

2.1. Lithologic and stratigraphic characteristics

Each rhythmite succession is characterized by thin, rhythmically interbedded, fine-grained limestone and
marl or shale (Fig. 2). For brevity, limestone–marl (or shale) rhythms are referred to as limestone–marl rhythms regardless of the carbonate content of the carbonate-poor layer. The term marl is a descriptive term and refers to clayey or silty limestone and is not meant to imply a specific clay/silt concentration. Two of the rhythmite successions (upper Hanson Creek and Banff Formations) are unique in that they are composed of fine limestone interbedded with chert (Habib and Elrick, 2002) (Fig. 2F). Individual limestone and marl (or chert) layers are relatively constant in thickness (rather than nodular) and are laterally continuous over many tens to hundreds of meters. In addition, the rhythmite-bearing stratigraphic intervals (ten to hundreds of meters thick) can be correlated several to tens of km between isolated outcrops and in some cases, for over 500 km (Mississippian; Fig. 1).

Limestone layers are composed of laminated to massive, pelleted lime mudstone to lime mudstone (now microspar) and contain sparse to rare macrofossils (Fig. 3A). Marl layers are composed of laminated to massive, argillaceous to dolomitic pelletal lime mudstone and lime mudstone (Fig. 3B): shale layers range from mudshale to calcareous mudshale. Both marl and shales contain sparse to rare macrofossils, which are similar to types occurring in the associated limestones. Chert in the Upper Ordovician and Mississippian limestone–chert rhythms is composed of dark, laminated to massive, calcareous spiculitic chert (Fig. 3C); early diagenetic dissolution and intra- and inter-layer redistribution of opaline silica resulted in the replacement of limestone by chert (Habib and Elrick, 2002).

Contacts between carbonate-rich and carbonate-poor layers are sharp to gradational (over <1 cm) (Figs. 1 and 3); sharp contacts are likely the result of pressure solution. Insoluble residues in marl layers range from 3 to 70 weight percent (wt.%) and are composed of clay (dominately illite), quartz silt, and organic matter. Insoluble residues in limestone layers range from 3 to 55 wt.% and are similar in composition to that in associated marl layers. Total organic carbon (TOC) values in marl layers range from below detection limits (<0.2 wt.%) to average values of 0.7 wt.% (with rare samples of 2.5 wt.%). Limestone TOC values range from below detection limits to 0.8 wt.%.

2.2. Depositional versus diagenetic rhythmites

In the diagenetic model of rhythmite development (Munnecke and Samtleben, 1996; Westphal et al., 2000), unstable aragonite is dissolved in the shallow-marine burial environment to form marl layers and is redistributed to adjacent layers as calcite cement to form limestone layers. This early cementation protects limestone layers from burial compaction, while the marl layers are highly compacted. Ricken (1986) suggested a similar model of carbonate dissolution and reprecipitation in the deep-burial environment. Some of the strongest evidence supporting a diagenetic origin for specific rhythmite successions within the sedimentary record includes: (1) primary depositional features (e.g., shell beds) cutting across limestone or marl layers, and (2) similar ratios of diagenetically stable constituents (e.g., Ti/Al) and similar compositions or assemblages of diagenetically resistant organic-walled microfossils (palynomorphs) in carbonate-rich and carbonate-poor layers (e.g., Westphal et al., 2000, 2004).

The main evidence supporting a depositional origin for the Palaeozoic rhythmites of this study is the occurrence of primary depositional features including: (1) submillimeter-thick graded laminae in marls whose organized grain-size variations would not be preserved if pervasive carbonate dissolution occurred (Figs. 2B and 3B), (2) marl laminae onlapping cm-scale depositional relief on adjacent limestone layers; neither the marl laminae nor the delicate limestone microtopography would be preserved if large-scale carbonate dissolution occurred (Fig. 3D), (3) burrows within marl layers filled...
with limestone (Fig. 3E), burrows in limestone filled with marl, and vertical burrows cross-cutting limestone–marl contacts, and (4) discrete graded marl laminae encased within limestone layers (Fig. 3F); if marls were an insoluble byproduct of carbonate dissolution, individual marl laminae would not occur within limestone layers. Limestone–chert rhythmites are also interpreted as depositional rhythmites (rather than the concentrated silica preserved after carbonate dissolution) because chert layers have submillimeter-thick graded laminae similar to marl layers (Fig. 3C); again, such grain-size organization would not be preserved during extensive dissolution.

Several lines of stratigraphic evidence support a depositional origin for the rhythmites. The Cambrian Marjum and Mississippian Banff Formations rhythmite-bearing stratigraphic intervals are interbedded with 2–6 m-thick intervals of homogenous calcareous shale, which lack limestone interbeds (e.g., Elrick and Snider, 2002; their Fig. 10). These thicker shale intervals occur basin-wide and are indistinguishable from the shale interbeds of the closely associated rhythmites. Given the lithologic similarity and close stratigraphic relationships, it is unlikely that the thicker homogenous shale intervals are depositional while the immediately associated and lithologically similar shale interbeds are diagenetic.

with limestone (Fig. 3E), burrows in limestone filled with marl, and vertical burrows cross-cutting limestone–marl contacts, and (4) discrete graded marl laminae encased within limestone layers (Fig. 3F); if marls were an insoluble byproduct of carbonate dissolution, individual marl laminae would not occur within limestone layers. Limestone–chert rhythmites are also interpreted as depositional rhythmites (rather than the concentrated silica preserved after carbonate dissolution) because chert layers have submillimeter-thick graded laminae similar to marl layers (Fig. 3C); again, such grain-size organization would not be preserved during extensive dissolution.

Several lines of stratigraphic evidence support a depositional origin for the rhythmites. The Cambrian Marjum and Mississippian Banff Formations rhythmite-bearing stratigraphic intervals are interbedded with 2–6 m-thick intervals of homogenous calcareous shale, which lack limestone interbeds (e.g., Elrick and Snider, 2002; their Fig. 10). These thicker shale intervals occur basin-wide and are indistinguishable from the shale interbeds of the closely associated rhythmites. Given the lithologic similarity and close stratigraphic relationships, it is unlikely that the thicker homogenous shale intervals are depositional while the immediately associated and lithologically similar shale interbeds are diagenetic.
Middle Pennsylvanian
[41x338]Upper Permian Lamar
[41x692]352

Alternatively, using the diagenetic model, it might be argued, that the homogeneous calcareous shale interval lacked sufficient primary aragonite to promote the development of limestone interbeds and a subsequent increase in aragonite generated the overlying limestone–marl couplets.

The Cambrian, Middle Devonian, and Mississippian Lodgepole rhythmite successions are interbedded with debris flow and graded storm bed deposits (Elrick et al., 1991; Elrick and Snider, 2002). The Devonian debris flows are composed of reworked and folded rhythmite limestone clasts with a marl matrix (Fig. 4A); this indicates that the two lithologies existed on or very close to the seafloor and were incorporated into the debris flow. If the two lithologies were the product of diagenesis, they would not be available for incorporation into the episodic debris flows. Some of the rhythmites associated with the debris flows display soft-sediment folding related to debris flow emplacement (Fig. 4B); this indicates that both the limestone and marl layers were present immediately below the seafloor as distinct layers and were folded as the debris flow was emplaced. The Mississippian and Cambrian storm deposits are composed of 2–15 cm-thick layers of graded to wave-rippled skeletal limestones, which are conformably draped by laminated marls. The marl drapes indicate the availability of clay-rich material after waning storm conditions and are interpreted to represent final suspension settling after the storm passed. If the marl were product of diagenesis, it would not be available as loose material for deposition as mud drapes, nor would the marls consistently occur only at the tops of storm beds.
The Cambrian, Upper Ordovician, and Upper Devonian rhythmite successions are conformably overlain by or interbedded with meter-scale intervals of nodular-bedded limestone–marl rhythmites followed by bioturbated argillaceous lime mudstones lacking limestone–marl interbedding. This gradational transition is interpreted to represent an increase in bottom-water oxygenation, which permitted increased infaunal bioturbation and homogenization of the rhythmite facies. This repeated and predictable succession of nodular to bioturbated intervals cannot be explained by the diagenetic model.

An additional line of evidence supporting a depositional origin for interbeds is the extensive lateral continuity and even thickness of individual layers (over hundreds of meters or more) and the persistence of specific rhythmite-bearing stratigraphic intervals over
distances of tens to hundreds of km. These widespread occurrences preclude an origin related only to diagenesis because chemical gradients controlling cm-scale dissolution and solution transport would not likely remain consistent over such long distances.

Despite our depositional interpretation for the limestone–marl interbeds, we recognize in each studied example that differential diagenesis between limestone and marl layers has taken place because marl layers are significantly more compacted than limestone layers and...
some amount of pressure solution has accentuated the sharpness of contacts between interbeds.

2.3. Rhythmite couplet periodicity

The average period (or duration) of individual limestone–marl or limestone–chert couplets within the eight well studied rhythmite successions was calculated using spectral analysis (to determine dominant couplet thickness) combined with biostratigraphically calibrated undecomposed average sediment accumulation rates (e.g., Elrick et al., 1991; Elrick and Hinnov, 1996). Rhythmere time series were originally generated from changes in weight percent (wt.%) CaCO₃. Wt.% CaCO₃ power spectra from Cambrian and Devonian rhythmites were then compared to spectra generated by numeric “ranking” of individual layers (limestone layers ranked as 2, marl layers ranked as 1) and were found to be essentially identical (Elrick and Hinnov, 1996); given these results, all subsequent spectral analysis were conducted using lithologic rank time series (Fig. 5A). Individual limestone and marl layers were measured to the nearest 4–5 mm; commonly layers less than 5 mm were not laterally continuous over 0.5–1 m, thus were not recorded as distinct layers. To test for “operator bias”, two different geologists measured the thickness of interbeds along specific stratigraphic intervals within the Marjum and Liberty Hall rhythmites and spectral results were compared; the results between the comparisons were essentially identical.

The histograms and power spectra of these coded successions (Fig. 5B) give some common information, for example, the West Range Limestone histogram shows a highest percentage of couplets with 10 cm thickness; this is reflected by high power in the spectrum at the same wavelength. The spectra, however, provide a much expanded view of the couplet thickness distribution, and in addition, the spectral peaks additionally identify sequences of couplets with comparable thicknesses that occur with a regular pacing, whereas histograms record thicknesses regardless of their time-wise regularity.

Undecomposed average sediment accumulation rates for each of the well studied successions were calculated by measuring the thickness of biostratigraphically defined stratigraphic intervals, then tying the biostratigraphy into available numeric times scales to determine the average accumulation rates. It should be noted that the precision of typical Palaeozoic time intervals is quite poor and in many instances includes errors on the order of many millions of years. An example of our calculations is as follows: the stratigraphic thickness of the Lower Mississippian (specifically the Tournaisian as defined by conodont biostratigraphy) at the Banff rhythmite study locality is 490 m. The duration of the Tournaisian stage ranges from between 8 My and 13±3.6 My depending on which geologic time scale is used (Ross and Ross, 1987; Harland et al., 1989; Fordam, 1992; Gradstein et al., 2004) (Table 3). The 490 m thickness was divided by the range of these Tournaisian durations to give a range of average sediment accumulation rates of between 2.8 and 6.1 cm/ky (Table 3). The total range of undecomposed average sediment accumulation rates for the eight rhythmite successions is between 1.9 and 21 cm/ky (Table 3).

The periods of couplets were determined by dividing the thickness of couplets (using the range of highest variance spectral peaks and median couplet thickness from couplet thickness histograms; Fig. 5A) by their...
associated range of sediment accumulation rates. Using these methods, the eight well studied rhythmite successions range in duration from between ~147 and ~4910 yrs, with the majority lying between ~1000 and 3000 yrs (Fig. 5B; Table 3). Limitations on our time control do not permit us to detect frequency changes from one time period to another within the Palaeozoic.

The observed differential compaction between the marl and limestone layers of couplets means that time is unequally distributed within couplets; as a result, some of the peaks in the Palaeozoic spectra shown in Fig. 5B are likely generated by the distortion–compaction problem. Attempts at decompacting the marls relative to the limestones could reduce the “noise” within the spectra; we opt to illustrate unaltered spectral results to simply highlight the relatively uniform couplet thickness within each succession.

At present, there are no formal techniques for estimating spectral noise models for “binary” coded processes such as those represented by these series. Therefore, we have not attempted to assess the statistical significance of the various peaks in the estimated spectra beyond labeling dominant or well-defined ones. Bootstrap techniques may be useful for estimating noise (e.g., Efron and Tibshirani, 1993), although they are appropriate only for stationary series; i.e., series with stable frequency behaviour. As noted, sedimentation rates likely induce apparent frequency shifts in these data, thereby limiting the utility of bootstrap. However, this problem applies to all signal-to-noise estimation techniques applied to stratigraphic data. We anticipate addressing this estimation problem in future work on these and similar data.

We recognize that the uncompacted accumulation rates average rates over many millions of years and over varying facies, and include the effects of differential compaction, nondeposition, and erosion. However, even these simplified estimates generate accumulation rates which differ over an order of magnitude and still these indicate that the limestone–marl couplets represent less than a few thousand years of time.

Several lines of evidence unrelated to our accumulation rate estimates support the interpreted millennial-scale durations versus typical orbital-scale (~20–100 ky) durations. First, the number of successive couplets in any one Palaeozoic rhythmite succession ranges from over 50 to 6000. If the couplets are assumed to have a ~20 ky period (precessional), then the time span represented by the rhythmite-bearing intervals would be exceedingly long. For example, the ~6000 rhythmite couplets in the Middle Cambrian Marjum Formation would represent >100 My of time for a 400 m-thick stratigraphic interval spanning a single trilobite biozone within the Middle Cambrian (assuming Cambrian precessional periods of ~17.7 ky; Berger and Loutre, 1994). The Lower Mississippian Lodgepole Formation has over 500 successive couplets which would represent ~10 My of time for a small fraction of a single conodont biozone. Second, if a ~20 ky period is assumed for individual couplets, then average sediment accumulation rates would be <1 cm/ky, which is a rate more similar to modern open-ocean or abyssal plain rates and an order of magnitude lower than Holocene hemipelagic or inland sea rates (Enos, 1991). If 40 ky or 100 ky were assumed for the couplets (obliquity and eccentricity, respectively), the accumulation rates would slow accordingly. Such slow accumulation rates are unlikely considering that all of the rhythmite successions were deposited less than a few tens of km from their shallow-carbonate platform source areas. In addition, there is no sedimentologic evidence in any of the successions indicating slow sedimentation rates or condensed intervals (i.e., hardgrounds, highly burrowed intervals, concentration of authigenic minerals, or concentration and diverse faunal assemblages). In addition, limestone layers in the Lower Mississippian Lodgepole Formation rhythmites contain rare, in-growth position bryozoan fronds and rugose corals indicating relatively rapid sediment accumulation rates, essentially burying the organisms in their growth position. Such relationships would not occur if accumulation rates were on the order of a less than few cm/ky.

Fig. 5. (A) Lithologic rank time series of well studied rhythmites. Marl=1, limestone=2. (B) Spectral analysis of the well studied succession (left) and couplet thickness histograms (right). The spectra (solid line) of the rank series were calculated using the Blackman–Tukey estimator with 30% lags and Tukey windowing (Paillard et al., 1996). Dominant or well-defined spectral peaks are labeled in centimeters. Average sediment accumulation rates for each succession are shown in upper right (data for calculations in Table 3). Couplet thickness histograms were calculated using the field measurements of couplet thicknesses (to nearest 5 mm) with the exception of the Lower Mississippian Lodgepole data, and are displayed in 0.5 cm bins. Tables list basic statistics on couplet thickness data. Middle Cambrian Marjum Formation (length = 904.7 cm; Δd = 0.1 cm; bandwidth = 0.004913 cycles/cm), Middle Ordovician Liberty Hall Formation (length = 602.1 cm; Δd = 0.1 cm; bandwidth = 0.007383 cycles/cm), Middle Devonian Denay Formation (length = 600.5 cm; Δd = 0.1 cm; bandwidth = 0.007403 cycles/cm), Upper Devonian West Range Limestone (length = 565.5 cm; Δd = 0.1 cm; bandwidth = 0.007861 cycles/cm), Lower Mississippian Lodgepole Formation (length = 3630.0 cm; Δd = 0.1 cm; bandwidth = 0.002453 cycles/cm), Lower Mississippian Barff Formation (length = 736.5 cm; Δd = 0.1 cm; bandwidth = 0.006036 cycles/cm).
2.4. Depositional interpretations

Given the interpreted primary depositional origin and millennial-scale periods for the rhythmite couplets, it is obvious to ask what paleoenvironmental conditions oscillated on a repetitive basis to produce such persistent and rhythmic interbedding between the two contrasting lithologies. The paucity and low diversity of benthic
Fig. 5 (continued).
organisms (body and trace fossils), common preserved suspension laminae, lack of sedimentary structures indicative of current-reworking, and facies associations indicate that each rhythmite succession was deposited in quiet, dysaerobic bottom waters below storm-wave base. The similarity of features between the contrasting lithologies indicates that changes in water depth (sea-level change) were not directly involved in the development of the rhythmic interbedding. The Upper Ordovician limestone–chert rhythmites represent similar depositional settings within a regional coastal-upwelling zone, which affected western and southwestern North America during the Late Ordovician (Pope and Steffen, 2003).

Calcareous marine plankton (coccolithophores, pelagic foraminifera) supplying silt-size calcareous particles to the seafloor evolved in the early Mesozoic (Tappan and Loeblich, 1973). Thus, the fine calcareous particles in

<table>
<thead>
<tr>
<th>Rhythmite succession</th>
<th>Biostratigraphic age and numeric duration</th>
<th>Biostratigraphic interval thickness (m)</th>
<th>Average sediment accumulation rates (cm/ky)</th>
<th>Couplet thickness: spectral plots (cm)<sup>a</sup></th>
<th>Couplet duration: spectral range (yrs)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Cambrian Marjum Fm</td>
<td>Middle Cambrian (2)</td>
<td>815</td>
<td>4.8–7.2<sup>f</sup></td>
<td>530–1700<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Middle Ordovician Liberty Hall Fm</td>
<td>part Whiterockian and Mohawkian (7,8)</td>
<td>380</td>
<td>4.7</td>
<td>4.1–8.9<sup>f</sup></td>
<td>1020–1530<sup>f</sup></td>
</tr>
<tr>
<td>Upper Ordovician lower Hanson Creek Fm</td>
<td>Marysvillian and Richmondian (9)</td>
<td>235</td>
<td>4.3</td>
<td>19<sup>f</sup></td>
<td>4410</td>
</tr>
<tr>
<td>Upper Hanson Creek Fm (limestone–marl)</td>
<td>5.5 My (6)</td>
<td>80</td>
<td>0–19.9</td>
<td>18<sup>c</sup></td>
<td>900–3390<sup>f</sup></td>
</tr>
<tr>
<td>Middle Devonian Denay Limestone</td>
<td>Eifelian and Givetian (3)</td>
<td>465</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Mississippian Lodgepole Fm</td>
<td>Part Kinderkookian and Osagean (14, 17)</td>
<td>195</td>
<td>1.9–2.5</td>
<td>5.9–12.7<sup>f</sup></td>
<td>968–3050<sup>f</sup></td>
</tr>
<tr>
<td>Banff Fm</td>
<td>Tourmaisan (16)</td>
<td>490</td>
<td>2.85–4.5</td>
<td>8.9–14<sup>f</sup></td>
<td>1450–4910<sup>f</sup></td>
</tr>
</tbody>
</table>

[*]References cited for numeric ages (uncertainties provided when reported) and biostratigraphy shown in parenthesis.

^oNumeric ages based on most recent data and different from those reported in Elrick and Hinnov (1996) and Elrick et al. (1991).

[◊]Stratigraphic thicknesses measured at specific studied section.

[†]Range based on highest variance spectral peaks lying above 95% confidence interval in Fig. 4B.

[#]Median couplet thickness determined from histograms in Fig. 4B.

[∞]Average couplet thickness determined from number of couplets divided by rhythmite succession thickness.

these Palaeozoic rhythmites is interpreted to have been derived from the abrasion of coarser grained shallow-water carbonates and offshore transport by storm-generated or gravity flow currents; in other words, the limestone is detrital in origin. Supporting this detrital interpretation is that coeval deposits occurring farther offshore of the studied localities are commonly composed of shale or marl successions with either very thin limestone laminae or no interbedded limestone layers at all. This consistent decrease in limestone content in offshore directions suggests an onshore source for the limestone layers. Individual submillimeter-thick graded suspension laminae in both limestone and marl layers are interpreted to represent individual storm events or dilute density currents, with each limestone and marl layer containing several hundred events per layer. It is important to emphasize that individual limestone–marl couplets do not represent single events, rather they represent tens to hundreds of events.

Since both limestone and marl layers are composed of similar grain sizes (clay-through silt-size carbonate or silicate/siliceous particles), similar suspension laminae, and similar fossil types and abundances, we interpret similar depositional conditions during limestone and marl accumulation. The only difference between the carbonate-rich and carbonate-poor layers is the relative proportion of terrigenous silt and clay, or in the case of limestone–chert rhythmites, the relative proportion of siliceous sponge spicules. This observation implies that the transport mechanisms and dysaerobic bottom water conditions were maintained as each rhythmite succession accumulated with only the mineralogy (carbonate versus silicate) of the fine particles varying through time.

Determining whether detrital limestone or fine terrigenous material, or both, were fluctuating to produce the limestone–marl rhythmites is difficult. Previous workers have attempted various methods to distinguish which component was fluctuating including comparing variations in organic matter versus wt.% CaCO$_3$ (Ricken, 1991) or constructing plots of wt.% CaCO$_3$ versus Si/Al, P/Al, and Ba/Al ratios and ternary diagrams of Ca, Al, and organic matter (Arthur and Dean, 1991). Attempts at using these methods proved inconclusive for the studied Palaeozoic rhythmites. As a result, our interpretations leave open the possibility that one or both components were fluctuating through time.

2.5. Sediment sources and influx variations

Table 4 outlines the main sources and controls on fine terrigenous, detrital carbonate, and dissolved silica input into offshore marine basins at millennial time scales. The following brief discussion outlines the most reasonable mechanisms involved in Palaeozoic rhythmite development.

2.5.1. Terrigenous clay–silt

Continental-derived clay and silt is originally transported to marine shorelines by fluvial and/or eolian processes, then transported offshore by marine currents (storm-generated or gravity flow currents), delta progradation, or blown directly into the ocean by winds (Table 4). Controls on these eolian, fluvial, and marine transport processes can be grouped into tectonic (gravity flow currents, slope stability), climatic, and internally driven processes. Internally driven processes are those mechanisms which occur within the sedimentary system such as distributary channel avulsion and delta lobe migration, typical tidal flat progradation in response to onshore sediment accumulation, and simple bedform migration.

For the terrigenous component, we eliminate delta- lobe switching because it is unlikely that this could account for each Palaeozoic rhythmite occurrence as that would require each succession to be associated with a delta, and the delta would have to repeatedly switch at millennial time scales regardless of the paleoenvironmental/palaeogeographic conditions associated with each succession (i.e., drainage basin size, fluvial discharge rates, shelf morphology, and associated marine currents). We discount a mechanism related to changes in vegetative cover because half of the studied successions accumulated before the evolution of terrestrial plants. Slope failure (tectonic or internally driven) is a common mechanism for the initiation of gravity flow currents. Using deep-water turbidities as earthquake proxies, Adams (1996), and Goldfinger et al. (2003) report that the average Holocene repeat time for rupture along major fault systems of the Cascadia subduction zone (convergent plate margin) and the northern San Andreas fault (transform plate margin) is on the order of \sim 600 yrs. While these recurrence intervals lie within the time range of the Palaeozoic rhythmites, it is unlikely that such recurrence intervals could be sustained for the 10^4–10^5 yr time spans of the rhythmite-bearing intervals and in the diverse tectonic settings represented by the various successions (see Tectonic Setting discussion).

The remaining controls on terrigenous influx are related to climate change (wind direction/intensity, source area aridity, precipitation, storm location/intensity/frequency, sea-level change, and flooding) (Table 4). Millennial-scale climate changes are documented throughout the late Neogene–Quaternary, and in particular, have been shown to affect eolian- and fluvial-derived terrigenous
2.5.2. Detrital carbonate

The fine detrital carbonate within carbonate-rich and carbonate-poor layers was originally produced within nearshore carbonate settings and was transported offshore by storm-generated or gravity flow currents. Millennial-scale variations in input to offshore basins were potentially controlled by changes in nearshore carbonate productivity or offshore marine transport, which are driven by internally driven, tectonic, and/or climatic processes (Table 4).

Table 4
Possible sources and tectonic, climatic, and internally driven controls on accumulation of terrigenous, detrital carbonate, and dissolved silica into offshore marine basins

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Source and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eolian</td>
<td>Wind direction/intensity</td>
</tr>
<tr>
<td></td>
<td>Source area aridity, vegetation</td>
</tr>
<tr>
<td>Fluvial</td>
<td>Precipitation, vegetation</td>
</tr>
<tr>
<td>Delta-lobe switching</td>
<td>Drainage basin characteristics, discharge, marine basin processes</td>
</tr>
<tr>
<td>Marine transport</td>
<td>Storm-generated currents</td>
</tr>
<tr>
<td></td>
<td>Storm location, frequency, intensity</td>
</tr>
<tr>
<td></td>
<td>Gravity flow currents</td>
</tr>
<tr>
<td></td>
<td>Seismicity, slope stability, sea level, floods</td>
</tr>
<tr>
<td>Terrigenous clay and silt</td>
<td>Nearshore carbonate productivity</td>
</tr>
<tr>
<td></td>
<td>Climate</td>
</tr>
<tr>
<td></td>
<td>Temperature, salinity, storms, wave energy</td>
</tr>
<tr>
<td></td>
<td>Ecology</td>
</tr>
<tr>
<td></td>
<td>Evolution, nutrients, disease</td>
</tr>
<tr>
<td>Detrital carbonate</td>
<td>Continental silicate weathering</td>
</tr>
<tr>
<td></td>
<td>Soils, microbes, pH, vegetation, climate</td>
</tr>
<tr>
<td>Chert (dissolved silica)</td>
<td>Submarine basalt hydrothermal alteration</td>
</tr>
<tr>
<td></td>
<td>Temperature, basalt thickness, alteration extent, eruption rates</td>
</tr>
<tr>
<td></td>
<td>Upwelling</td>
</tr>
<tr>
<td></td>
<td>Wind direction/intensity, marine circulation</td>
</tr>
<tr>
<td></td>
<td>Marine transport</td>
</tr>
<tr>
<td></td>
<td>Storm-generated currents</td>
</tr>
<tr>
<td></td>
<td>Storm location, frequency, intensity</td>
</tr>
<tr>
<td></td>
<td>Gravity flow currents</td>
</tr>
<tr>
<td></td>
<td>Seismicity, slope stability, sea level, floods</td>
</tr>
</tbody>
</table>

c = climate control, t = tectonic control, i = internally driven.

Short-term changes in nearshore carbonate productivity have been documented (e.g., Mallinson et al., 2003; however, they are linked to climate change influencing biologic productivity rather than internally driven (ecologic) factors. Even if short-term, ecologically driven changes were occurring to control the influx of detrital carbonate to offshore environments, it is not likely that such internally driven changes would be sustained over 10^4–10^5 yr time spans, nor would such consistent and repetitive changes be expected for each of the studied Palaeozoic time intervals. Seismic activity initiating slope failure and gravity flow currents are documented in the Holocene to occur at multi-centennial time scales (e.g., Adams, 1996); however, as argued
Fig. 6. Paleogeographic reconstructions of Palaeozoic rhythmite-bearing time intervals (modified from Scotese, 2001) showing wide spectrum of paleogeographic and paleoceanographic conditions during rhythmite development. Darker shading = exposed land masses, light shading = shallow marine environments, white = open ocean, diagonal lines = continental ice sheets. Filled circles show approximate locations of well studied rhythmite successions; unfilled circles show approximate locations of reconnaissance successions. Note that locations are approximations because the illustrated paleogeographic positions are time averaged over many millions of years and may not represent configurations at the specific time of rhythmite development.
above, it is unlikely these recurrence intervals would occur in each of the studied successions, and be sustained over the 10^4–10^5 yr time spans of each rhythmite-bearing succession.

Short-term climate changes influencing nearshore carbonate productivity (via changes in temperature, salinity, turbidity, nutrient content, storm wave energy) and offshore transport have been documented in the Holocene (e.g., Greer and Swart, 2001; Mallinson et al., 2003) and provide a viable mechanism to explain the observed Palaeozoic trends.

2.5.3. Dissolved silica

The source for dissolved silica for the siliceous sponge spicules within chert layers was derived from (1) continental silicate weathering, (2) hydrothermal alteration of submarine basalts, and/or (3) coastal upwelling and recycling of dissolved biogenic silica (Table 4). Alternatively, the dissolved silica flux and sponge productivity could remain constant, while the offshore transport of disarticulated siliceous spicules by storm-generated or gravity flow currents could vary.

Short-term variations in continental weathering and hydrothermal-derived dissolved silica to offshore environments are influenced by various internally driven (vegetation, soil type/abundance, microbial activity, pH, basalt permeability and alteration extent) and climatically controlled (temperature, precipitation, pCO$_2$, fluvial discharge, marine circulation) processes (Table 4; Berner and Berner, 1997; Walther, 2005). We eliminate internal drivers because, as argued above, it is unlikely that the complex interplay of such processes could reoccur for each of the studied Palaeozoic time intervals and for sustained time spans.

Millennial-scale waxing and waning of mid-ocean ridge volcanism is reported for a segment of the East Pacific Rise (Cormeir et al., 2003). However, the pattern of associated hydrothermal circulation/alteration is controlled by differences in lava flow thickness and porosity, and fault density along ridge segments and it is unlikely that dissolved silica fluxes to shelf environments would mimic eruption rates and patterns. Short-term climate changes can control coastal upwelling patterns (wind direction/ intensity, seawater temperature, and sea-level), dissolved silica in fluvial discharge, and storm-generated currents. Recent examples of millennial-scale changes in upwelling (e.g., Piasis et al., 2001; Jung et al., 2002; Dupont et al., 2005),
fluvial sediment discharge (e.g., Tada et al., 1999; Moreno et al., 2002), and storminess (e.g., Noren et al., 2002) support a climatically controlled origin for the observed changes in Palaeozoic chert-limestone rhythmites.

In summary, the most reasonable mechanism for explaining the millennial-scale oscillations from carbonate-rich to carbonate-poor layers is short-term climate change. Although the specific mechanism is not clear, we suggest that the rhythmic alternations are the result of: (1) wet/dry climate cycles which influenced the amount of continent-derived eolian and/or fluvial sediment input, (2) variations in the offshore transport of nearshore terrigenous or carbonate sediments (i.e., storm-generated or density currents), and/or (3) changes in wind-driven upwelling and availability of recycled biogenic silica.

2.6. Paleoenvironmental conditions during rhythmite deposition

2.6.1. Paleogeographic and tectonic settings

The seventeen Palaeozoic rhythmite successions accumulated on both sides of the North American craton (Fig. 1) and were deposited across a range of subtropical to equatorial paleolatitudes (Fig. 6, Tables 1 and 2). The depositional basins formed along passive margins, fault-bound passive-margin embayments, forelands and back-bulge basins, or basins that developed during the transition from passive margins to foreland basins (Tables 1 and 2). Fig. 6 illustrates the wide range of paleogeographic configurations which existed during the development of each rhythmite succession and between the Palaeozoic and late Neogene–Quaternary configurations. For example, during the Cambrian and Ordovician, many continents were widely separated and extensively flooded, and North America straddled the paleoequator and was surrounded on all sides by oceans. By the Carboniferous and Permian, North America drifted into the northern hemisphere, the continents were widely exposed and assembled into Pangea, and the extensive Panthalassa and paleo-Tethys dominated the marine realm (Scotese, 2001). Of importance is not the exact location of accumulation of each rhythmite succession, rather that the location, size, and shape of the paleooceans were significantly different between each rhythmite time interval, as well as very different from late Neogene–Quaternary configurations. For example, during the Cambrian and Ordovician, many continents were widely separated and extensively flooded, and North America straddled the paleoequator and was surrounded on all sides by oceans. By the Carboniferous and Permian, North America drifted into the northern hemisphere, the continents were widely exposed and assembled into Pangea, and the extensive Panthalassa and paleo-Tethys dominated the marine realm (Scotese, 2001). Of importance is not the exact location of accumulation of each rhythmite succession, rather that the location, size, and shape of the paleooceans were significantly different between each rhythmite time interval, as well as very different from late Neogene–Quaternary configurations. Given these widely varying paleogeographic and paleoceanographic conditions, it is apparent that the patterns and intensities of atmospheric circulation, heat and moisture transport, upwelling, and thermohaline circulation would vary greatly during each studied time interval and cannot be compared to those patterns which occurred over the last few million years.

2.6.2. Paleoclimatic and paleoceanographic settings

The Palaeozoic rhythmites were deposited during widely varying long-term (10s My) climatic and atmospheric regimes including: (1) greenhouse, icehouse, and transitional climate modes, (2) arid versus humid climate belts, and (3) varying atmospheric CO₂ concentrations (Fig. 7). Greenhouse climates are characterized by gentle pole-to-equator temperature gradients, high global sea levels and temperatures, and little evidence for significant continental ice sheets; icehouse climates are distinguished by the opposite trends (Fischer, 1984). Of the seventeen successions, six accumulated when the oceans were characterized as “calcite seas” (calcite being the dominant inorganic marine precipitate), two developed during times of “aragonite seas”, and eight occurred during transitional times (Fig. 7) (Hardie, 1996; but see Westphal and Munnecke, 2003 for alternative interpretations). When the age of rhythmite successions are plotted against the 1st-order sea-level curve of Vail et al. (1977), they occur during all phases including long-term highs, lows, and transitional sea-level positions (Fig. 7). That lack of obvious relationships between these long-term boundary conditions and rhythmite occurrence suggests that rhythmite development was independent of these paleoenvironmental parameters.
order (~1–5 My) sea-level rises and form part of the
transgressive systems tract (TST) or maximum flooding
zone (MFZ). This can be predicted because maximum
water depths (substorm wave base depths) would be
attained during sea-level rises and shallow-water car-
bonate platforms would be flooded, carbonate produc-
tivity high, therefore offshore transport of detrital
carbonate would be maximized (c.f., Schlager, 1993).

As rhythmites were developing along the outer shelf/
offshore regions, nearshore environments were record-
ing the effects of $10^4–10^5$ yr (5th-order) sea-level
fluctuations manifest by the occurrence of meter-scale,
upward-shallowing carbonate cycles. For each of the
well studied successions, the coeval nearshore 5th-order
cycles have been previously interpreted as the result of
glacio-eustatic, sea-level changes (Read, 1980; Bond
et al., 1991; Elrick and Read, 1991; Montañez and
Osleger, 1993; Elrick, 1995, 1996; LaMaskin and
Elrick, 1997; Harris and Sheehan, 1997). This implies
that during rhythmite formation, the shallow-water
carbonate platforms were affected by $10^4–10^5$ yr sea-
level changes, yet these oscillations did not apparently
affect the lithologic character or thicknesses of the
eoval rhythmites. If the glacio-eustatic origin for the
5th-order cycles is correct, then this suggests that
rhythmites formed throughout 5th-order sea-level rises
(interglacial phases) and falls (glacial phases) without
apparent change in character or thickness. Presently, it is
not clear why the rhythmite successions lack over-
printing by these 5th-order frequencies (orbital frequen-
cies); however, rhythmites are observed at the base
of some 5th-order Mississippian and Pennsylvanian
cycles (c.f., Elrick et al., 1991) indicating they formed
during the deepest water phase (interglacial) of cycle
development.

2.6.3. Biologic evolution
The seventeen rhythmite successions occur over a
total time span of ~250 My (Middle Cambrian to Late
Permian) during which many significant evolutionary
events occurred including two major global mass
extinctions and associated re-radiations, and the incep-
tion of land animals and plants (Fig. 7). All of the
rhythmites developed prior to the evolution of calcareous
plankton (planktonic foraminifera, coccolithoporids)
and when biogenic carbonate accumulation was restrict-
ed to continental margins and flooded cratons. The
Cambrian and Ordovician rhythmites accumulated prior
to the evolution of land plants and animals; thus prior to
the time when continental weathering rates were
influenced by complex relationships between vegetation
and climate change. The two Upper Ordovician
rhythmites successions accumulated immediately before
and after the Late Ordovician mass extinction event and
 glaciation (Finney et al., 1999). Three of the Upper
Devonian rhythmites accumulated immediately before
and after the Late Devonian mass extinction (Sandberg
et al., 1988). The occurrence of rhythmites closely
associated with catastrophic changes in marine biota,
including carbonate-secreting marine organisms, sug-
gests that rhythmite development was not influenced by
global changes in biologic diversity and abundance.

2.7. Discussion

Results from this study indicate that the relatively
common occurrence of Palaeozoic deeper water rhythm-
ites is favored by the following paleoenvironmental
conditions: (1) deposition below storm-wave base to
limit reworking by deeper marine currents, (2) dysaero-
bic bottom waters to restrict bioturbation and intermix-
ing of interbedded lithologies, and (3) proximity to
nearshore carbonates supplying abundant fine-grained
detrital carbonate. These combined conditions were best
met along flooded, subtropical continental shelves or
epicic seas during My-scale (3rd-order) sea-level rises.

Given these required conditions, it is not surprising
that reports of late Neogene–Quaternary rhythmites are
rare. In contrast to much of the Palaeozoic, sea levels
during the last ~30–40 My have been low, and post-
Eocene icehouse climate conditions resulted in abundant
exposed continental margins, relatively narrow contin-
tental shelves, with thick nearshore carbonate accumu-
lations restricted to relatively narrow latitudinal ranges
(<35°N–S). In addition, the large amplitude, glacio-
eustatic sea-level oscillations (and associated changes in
wave base) characteristic of the past few million years
resulted in extensive wave reworking of upper slope and
shelf environments.

Despite these icehouse-related conditions, millenni-
al-scale alternations in carbonate-rich versus carbonate-
poor sedimentation are reported from Quaternary upper
continental slope deposits off northeastern Brazil (Arz
et al., 1998). Oxygen isotopes from planktonic forami-
ifera indicate that warming of surface waters coincided
with more humid continental conditions and enhanced
continental weathering, leading to increased terrigenous
influx to the outer shelf and slope. During cooler phases
and decreased continental weathering, more carbonate-
rich deposits accumulated along the upper slope. Arz
et al. (1998) relate the changes in surface-water tem-
peratures and the resultant changes in continental hu-
midity to variations in the intensity of the southeast trade
winds.
Records of millennial-scale climate variability are well documented in early Pliocene through Holocene marine, terrestrial, and glacial records from both the northern and southern hemispheres, and from polar through to tropical latitudes. We cite examples from some of these settings below; additional examples are given by Alley et al. (1999), Leuschner and Sirocko (2000), Ruddiman (2001) and Sarnthein et al. (2002).

2.7.1. Glacial records

Denton and Stuiver (1967) and Denton and Karlen (1973) detected \(\sim 2000–3000 \) yr variations in the advance and retreat patterns of late Pleistocene–Holocene alpine glaciers in North America and Europe. More recently, glacial moraine and pollen studies in the Andes and New Zealand Alps reveal synchronous millennial-scale cooling and warming patterns, which correlate with those observed in the Northern Hemisphere ice record suggesting similar interhemispheric climate changes (Heusser et al., 1999; Denton et al., 1999). Some of the best known evidence for millennial-scale climate changes comes from long ice cores from the Greenland and Antarctica continental ice sheets which record \(\sim 1500 \) yr oscillations (Dansgaard–Oeschger cycles) in oxygen and hydrogen isotopes, and dust, salt, and methane concentrations (e.g., Yiou et al., 1991; Dansgaard et al., 1993; Grootes et al., 1993; Mayewski et al., 1994; Brook et al., 1996).

2.7.2. Marine records

Pleistocene to Holocene millennial-scale climate variability is documented in continental shelf, slope, and deep-sea sediments from around the globe. Within the North, South, and tropical Atlantic, abundant evidence for millennial-scale climate change is recorded in the \(\delta^{18} \)O record of pelagic and benthic foraminifera (e.g., Curry and Oppo, 1997; Raymo et al., 1998; McManus et al., 1999), foraminifera assemblages (e.g., Little et al., 1997; Huls and Zahn, 2000), ice-rafted debris (IRD; Bond and Lotti, 1995), rock magnetic parameters (Moreno et al., 2002), carbonate percentage (Keigwin and Jones, 1994; Arz et al., 1998), and aragonite versus calcite abundances (Roth and Reijmer, 2005). Similar temporal variations are observed in the Indian Ocean by changes in dust abundance (Leuschner and Sirocko, 2000), laminated organic-rich sediments (Schulz et al., 1998), foraminifera assemblages (Reichart et al., 1998), and \(\delta^{13} \)C record of foraminifera (Pestiaux et al., 1988). Within the Pacific Ocean, millennial-scale variations are observed in the abundance of IRD (Kotilainen and Shackleton, 1995), influx of glacial rock flour (Carter and Gammon, 2004), and the patterns of laminated versus bioturbated continental shelf deposits (Behl and Kennett, 1996). Foraminiferal \(\delta^{18} \)O and \(\delta^{13} \)C records of Southern Ocean sediments also suggest millennial-scale climate variability similar to that in the northern hemisphere, though they may lead in timing (Charles et al., 1996).

2.7.3. Terrestrial records

Millennial-scale climate oscillations are recognized in a wide variety of late Neogene–Quaternary terrestrial deposits. In middle to low latitude lake deposits of both hemispheres, this climatic signal is recorded by changes in eolian influx (De Decker et al., 1991) rainfall-, storm- and ENSO-induced sediment influx (e.g., Allen and Anderson, 1993; Noren et al., 2002; Moy et al., 2002), organic matter and lignite content (Steenbrink et al., 2003), pollen assemblages (Grimm, 1993), and \(\delta^{18} \)O values, carbon content, and magnetic susceptibility (Benson et al., 1996). Short-term fluctuations have been identified in Chinese loess deposits indicated by changes in grain size, magnetic susceptibility, and carbonate content (Chen et al., 1996). In Europe, millennial-scale oscillations are observed by changes in soil character (Thouveny et al., 1994), pollen assemblages (Woillard and Mook, 1982), and speleothem stable isotopes (Wang et al., 2001; Genty et al., 2003). In western North America, fire-induced erosion and millennial-scale climate drought cycles are recorded in Holocene alluvial fan deposits (Meyer et al., 1995; Pierce et al., 2004), and a \(\sim 1500 \) yr rhythm is identified Holocene peat deposition in western interior Canada indicating regional wet–dry climate changes (Campbell et al., 2000).

It is beyond the scope of this paper to evaluate the mechanisms proposed to explain the origins of these late Neogene–Quaternary millennial-scale climate changes; however, the various hypotheses fall into the general categories of internal oscillations of the ocean–atmosphere system, periodic instabilities inherent to large ice sheets, and external forcing mechanisms. We briefly discuss these hypotheses to illustrate that paleoclimatologists focussed on the late Neogene–Quaternary commonly attribute millennial-scale climate changes to boundary conditions inherent to the late Cenozoic icehouse world and typically do not entertain pre-Cenozoic parameters.

Numerous modeling experiments report that centennial- to millennial-scale climate variability can be generated by internal oceanic processes which influence thermohaline circulation (THC) (e.g., Broecker et al., 1990; Sakai and Peltier, 1997; Winton, 1997; Paul and Schulz, 2002). The key element in each model is destabilization of a stratified high-latitude to polar water...
column by diffusion/advection of warm subsurface waters, which rapidly increases THC. Stabilization of the water column is facilitated by freshwater/meltwater influx or an increase in poleward heat transport. Once THC or deep-water formation is reduced or shut down, the diffusion/advection stage repeats itself. Over the last several million years, the North Atlantic has been an important and sensitive region for deep-water formation because of its relatively elevated salinity, position with respect to freshwater/meltwater influx, and geographic/bathymetric configurations. In contrast, little deep-water formation is generated in the modern North Pacific because surface salinities in the Bering Sea are too low to support or detract from the tidal model; in addition, the change in Earth–Moon distance since the Palaeozoic would have likely changed the long tidal cycle period.

Variations in solar activity as a mechanism to explain centennial- to millennial-scale climate change has been suggested for many decades (e.g., Bray, 1971; Suess, 1971; Eddy, 1976; Stuiver and Braziunas, 1989; Van Geel et al., 1999; Bond et al., 2001). The link between changes in solar output (as detected by covariations in the 14C and 10Be signal in tree rings and ice cores, respectively) and climate change has been detected in historical records (e.g., Eddy, 1976; Kiliyan et al., 1995) and in the Quaternary from varved lake deposits, IRD, sea surface temperatures, coarse sediment injections into the Norwegian Sea, and the GISP2 δ18O record (Anderson, 1992; Finkel and Nishiizumi, 1997; Friedrich et al., 1999; Bond et al., 2001; Schulz and Paul, 2002; Sarnthein et al., 2003). Presently it is not clear how very small perturbations in solar radiation could be amplified within the climate system to generate the observed significant climate changes. Proposed mechanisms involve changes in UV radiation associated with variations in solar activity, followed by changes in stratospheric ozone production, which leads to atmospheric temperature and circulation variations (Haigh, 1996; Van Geel and Renssen, 1998). A second hypothesis suggests that variations in solar radiation related to changes in solar activity influences cloudiness and atmospheric temperatures (Ney, 1959; Pudovkin and Raspopov, 1992; Svensmark and Friis-Christensen, 1997). If these ideas of solar forcing of Quaternary climates are correct, then it implies that the climate system is far more sensitive to small variations in solar activity than generally believed and it has major implications for understanding short-term climate changes observed in deep time.

If our interpretation for the origin of Palaeozoic rhythmites is correct, then it is apparent that millennial-scale climate changes occurred over a dramatic spectrum of oceanographic, geographic, climatic, tectonic, and biologic conditions and over time periods from the Cambrian to Quaternary. Given this, it is difficult to invoke models of internally driven THC oceanic oscillations or ice sheet instabilities to explain their origin.
Instead, we suggest that millennial-scale paleoclimate oscillations are a more permanent feature of the Earth’s ocean–atmosphere system, which points to persistent external driver such as solar forcing.

Acknowledgements

Field assistance for this research was provided over the years by Katerina Petrotis, Matt Tremblay, Anna Snider, Mark Boslough, Peg Reese, Liz Langenberg, Mike Pope, and Jennifer Loomis. The manuscript benefited from the comments of Hildegard Westphal, Axel Munnecke, Finn Surlyk, and two anonymous reviewers.

References

De Decker, P., Correge, P., Head, J., 1991. Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event. Geology 19, 602–605.

Pestiaux, P., Van der Mersch, I., Berger, A., Duplessy, J.C., 1988. Paleoclimatic variability at frequencies ranging from 1 cycle per 10000 years to 1 cycle per 1000 years: evidence for non-linear behavior of the climate system. Climate Change 12, 9–37.

